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By fitting dynamic contrast-enhanced MRI data to an appro-
priate pharmacokinetic model, quantitative physiological pa-
rameters can be estimated. In this study, we compare four
different models by applying four statistical measures to
assess their ability to describe dynamic contrast-enhanced
MRI data obtained in 28 human breast cancer patient sets:
the chi-square test (x2), Durbin–Watson statistic, Akaike infor-
mation criterion, and Bayesian information criterion. The phar-
macokinetic models include the fast exchange limit model
with (FXL_vp) and without (FXL) a plasma component, and the
fast and slow exchange regime models (FXR and SXR, respec-
tively). The results show that the FXL_vp and FXR models
yielded the smallest x2 in 45.64 and 47.53% of the voxels,
respectively; they also had the smallest number of voxels
showing serial correlation with 0.71 and 2.33%, respectively.
The Akaike information criterion indicated that the FXL_vp and
FXR models were preferred in 42.84 and 46.59% of the voxels,
respectively. The Bayesian information criterion also indicated
the FXL_vp and FXR models were preferred in 39.39 and
45.25% of the voxels, respectively. Thus, these four metrics
indicate that the FXL_vp and the FXR models provide the most

complete statistical description of dynamic contrast-enhanced
MRI time courses for the patients selected in this study. Magn
Reson Med 68:261–271, 2012.VC 2011 Wiley Periodicals, Inc.
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Dynamic contrast-enhanced MRI (DCE-MRI) involves the
acquisition of images before and after an intravenous
injection of contrast agent (CA). By fitting DCE-MRI data
to a pharmacokinetic model, quantitative physiological
parameters such as the volume transfer constant (Ktrans),
extravascular-extracellular volume fraction (ve), and the
plasma fraction (vp) can be estimated (1–3). In diagnos-
ing breast cancer, DCE-MRI has shown high sensitivity
(77–100%) but moderate specificity (26–97%) ((4–8),
reviewed in Ref. 9). In monitoring treatment response in
breast cancer, there have been many efforts using DCE-
MRI as a surrogate biomarker for predicting response to
neoadjuvant chemotherapy. Several investigators have
proposed both semiquantitative and quantitative methods
for classifying contrast enhancement curves and have
used this information to delineate complete response
from partial response and progressive disease (see, e.g.,
Refs. 10–20). For example, some investigators have shown
that changes in tumor size as measured by dynamic MRI
significantly correlate with residual disease at time of sur-
gery (e.g., Refs. 10–13). Considering the potentially more
difficult question of predicting treatment response early
in the course of therapy, some investigators have shown
that changes in tumor volume as measured by dynamic
MRI after one cycle of therapy significantly correlate with
pathologic response (e.g., Refs. 14 and 15). Morphological
characteristics (such as tumor size) are the downstream
effects of underlying physiological changes, so it seems
reasonable that changes in metrics of tumor perfusion
could serve as biomarkers of early response to treatment.

However, the literature presents differing results
regarding the predictive value of quantitative modeling
of DCE-MRI data; some have shown that kinetic analysis
was not predictive after early therapy (15,21), whereas
others have shown that it is (14,22). These contradictory
results may not be surprising considering the significant
differences in tumor type, treatment regimen, number of
patients, clinical and pathological endpoints, imaging
data acquisition, and data analysis techniques. Another
possible reason for such apparent discrepancies is that
the standard DCE-MRI model used to analyze such data
may not adequately describe the relevant physiology.
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The standard model relies on a linear dependence
between the measured longitudinal relaxation rate con-
stant R1 (:1/T1) and the concentration of CA in tissue
(23,24). This model assumes that tissue is effectively one
well-mixed compartment of water; in MRI, this assump-
tion is referred to as the fast exchange limit (FXL). Several
studies have presented evidence that this assumption is
violated in vivo especially when the concentration of CA
in the voxel of interest is high, and efforts have been
made to develop analyses that do not make this assump-
tion (23–29). By considering the extravascular space as
two separate compartments, an extravascular-extracellular
space and an extravascular-intracellular space, models
can be built that account for the limited rate of water
exchange between these compartments. This ‘‘fast
exchange regime’’ (FXR) model has revealed that signifi-
cant errors may arise when using the FXL analysis (24).
In particular, initial applications of the FXR model to
human breast cancer DCE-MRI data suggest that the FXL
formalism used in these studies can grossly underestimate
blood flow, vessel wall permeability, and extravascular-
extracellular volume fractions (27–29).

Although a few of studies have performed compari-
sons of kinetic models for DCE-MRI data of the prostate
or cervix (30,31), none has been performed for breast
cancer. Here, we report the results of standard statistical
tests on the breast cancer DCE-MRI analyses provided by
the FXL with and without a vascular term and the fast
and slow exchange regime models (FXR and SXR,
respectively) to assess which model is most robust in a
statistical sense. Because DCE-MRI ultimately aims to
positively impact clinical diagnosis and prediction of
treatment response, the choice of model to perform the
analysis is of central importance.

MATERIALS AND METHODS

Data Acquisition

Fifteen patients with locally advanced breast cancer were
enrolled in an ongoing clinical trial (32). The patients pro-
vided informed consent, and the study was approved by
the ethics committee of the Vanderbilt-Ingram Cancer
Center. DCE-MRI was performed using a Philips 3T
Achieva MR scanner (Philips Healthcare, Best, The Neth-
erlands). A four-channel receive double-breast coil cover-
ing both breasts was used for all imaging (Invivo Inc.,
Gainesville, FL). Data for constructing a T1 map were
acquired with an radiofrequency-spoiled three-dimen-
sional gradient echo multiflip angle approach with TR ¼
7.9 ms, TE ¼ 1.3 ms, and 10 flip angles from 2� to 20� in
2� increments. The acquisition matrix was 192 � 192 �
20 (full-breast) over a sagittal square field of view (22
cm2) with slice thickness of 5 mm, one signal acquisition,
and a sensitivity encoding (SENSE) factor of 2 for an ac-
quisition time of just under 3 min. The dynamic scans
used identical parameters and a flip angle of 20�. Each
20-slice set was collected in 16 s at 25 time points for �7
min of scanning. A catheter placed within an antecubital
vein delivered 0.1 mmol/kg (9–15 mL) of the CA gadopen-
tetate dimeglumine, Gd-diethylenetriamine penta-acetic
acid (DTPA) (Magnevist, Wayne, NJ) at 2 mL/s (followed
by a saline flush) via a power injector after the acquisition

of three baseline dynamic scans for the DCE study. Four
patients were scanned at three time points: pretreatment,
after one cycle of neoadjuvant chemotherapy, and after all
cycles of chemotherapy; and the other 11 patients were
scanned at the first two time points, yielding a total of 34
data sets. Six out of the 34 data sets failed to characterize
the first pass or wash-out features of the arterial input
function (AIF), yielding a total of 28 useable data sets.

Theory

The measured signal intensity from a spoiled gradient
echo acquisition can be described by Eq. 1:

S tð Þ ¼ S0 sina
1� exp �TR=T1 tð Þð Þ

1� cosa exp �TR=T1 tð Þð Þ ; ½1�

where a is the flip angle, TR is the repetition time of the
excitation radiofrequency pulse of the MR imaging
sequence, S0 is a constant describing the scanner gain and
proton density, and we have assumed that TE � T2*. To
perform quantitative DCE-MRI data analysis, the time-
varying longitudinal relaxation time, T1(t), must be related
to the concentration of CA in the tissue, Ct(t). Usually, a
linear relationship between the two quantities is assumed:

R1 tð Þ � 1=T1ðtÞ ¼ r1Ct tð Þ þ R10; ½2�

where R10 is the R1 value of the tissue before CA admin-
istration and r1 is the relaxivity of the CA. In actual
DCE-MRI experiments, the Ct time course cannot be
directly measured, and thus Eq. 2 needs to be expressed
in terms of the quantities that are actually measurable in
an MRI experiment (i.e., the relaxation rate constants).
Toward this end, we use the Kety relationship (33):

Ct ¼ K trans �
ZT
0

Cp tð Þ � e�ðK trans=veÞ�ðT�tÞdt; ½3�

where Ktrans is the CA extravasation rate constant, ve is
the extravascular-extracellular volume fraction, and Cp(t)
is the concentration of CA in blood plasma, also known
as the AIF. In this study, a semiautomatic AIF tracking
algorithm is used to calculate the AIF for each patient.
This algorithm is initialized by defining a kernel cen-
tered on a manually selected seed point within the axil-
lary artery in one slice. In an adjacent slice, the center of
the artery is detected through searching the maximum
Pearson correlation coefficient (CC) of the signal inten-
sity between the kernel and the region of interests in the
adjacent slice. The procedure is repeated for all slices to
find all voxels within the artery that are then used to
construct an AIF; more details are provided in Ref. 34.

A more complex model incorporates the blood plasma
volume fraction, vp:

CtðTÞ ¼ K trans

Z T

0

CpðtÞ expð�ðK trans=veÞðT � tÞÞdt þ vpCp tð Þ:
½4�

Substituting Eqs. 3 and 4 into 2 yields Eqs. 5 and 6,
respectively:
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R1ðtÞ ¼ r1K
trans �

ZT
0

CpðtÞ � e�ðK trans=veÞ�ðT�tÞdt þ R10; ½5�

R1ðtÞ¼ r1K
trans �

ZT
0

CpðtÞ � e�ðK trans=veÞ�ðT�tÞdt þ r1vpCp tð Þ þ R10:

½6�

Equations 5 and 6 are two of four models we assess in
the study, which are termed the FXL and FXL_vp,
respectively.

The ‘‘fast exchange’’ limit relationship described above
is equivalent to assuming that all water compartments
within the tissue are well mixed so the effects of the CA
are completely described by a single rate constant. How-
ever, tissue is not homogeneous, but rather it may be com-
partmentalized within an MRI voxel. The use of Eq. 2 for
the entire 1H2O signal from a voxel requires that water
exchange between the vascular, extravascular-intracellu-
lar space, and the extravascular-extracellular spaces are
sufficiently fast. In practice, this is often not the case; and,
when it is not, the Bloch equations should incorporate the
effects of this exchange, leading to longitudinal relaxation
that can be characterized by biexponential decay:

S tð Þ ¼ aLS0L sina
1� exp �TR=T1L tð Þð Þ

1� cosa exp �TR=T1L tð Þð Þ
þaSS0S sina

1� exp �TR=T1S tð Þð Þ
1� cosa exp �TR=T1S tð Þð Þ ; [7�

where

aL ¼ fw= vetið Þ
2
ti
� fw

veti

� �2
þ 4

ti2
fw
ve
� 1

� �� �� �1=2
; and as ¼ 1

2
� 1

2
aL;

½8�

and

R1S;1L tð Þ ¼ 1=T1S;1L¼ 1

2
2R1i þ r1CtðtÞ þ ðR10 � R1i þ 1=tiÞ

ðve=fwÞ
� �

6
1

2

2

ti
� r1CtðtÞ � R10 � R1i þ 1=ti

vefw

� �2
 

þ 4
ð1� ve=fwÞ
ti2ðve=fwÞ

�1=2

: [9�

T1S and T1L are the apparent shorter and longer T1

components, respectively, R1i is the intracellular R1, ti is
the average intracellular water lifetime of a water mole-
cule, and fw is the fraction of water that is accessible to
mobile CA (23–25), which is set to 1.0 in this study.
Equation 9 with and without the T1S yields the other
two models that we evaluate, which are termed the FXR
and SXR models, respectively (24).

Statistical Analysis

We used four common statistical tests to assess the anal-
yses provided by Eqs. 5, 6, and 9. The first is the Dur-
bin–Watson (D–W) statistic that is a commonly used test

for detecting serial correlation in residuals (35) and is
computed via Eq. 10:

d ¼
Pn

i¼1 ei � ei�1ð Þ2Pn
i¼1 ei

2
½10�

where ei are the residuals. In regression analysis, errors
are typically assumed to be pairwise uncorrelated; serial
correlation is a special case in which correlations
between errors separated by i steps are similar (35). If
residuals exhibit positive serial correlation, successive
residuals tend to be similar, whereas in negative serial
correlation, the successive residuals are dissimilar.
Equation 10 provides a way of quantifying these phe-
nomena. When the D–W statistic shows significant
serial correlation, the fitting model should be ques-
tioned. The range of d lies between 0 and 4; but to
establish the significance of d values upper and lower
bounds (dU and dL, respectively) must be evaluated.
Those bounds are determined by the number of observa-
tions, the number of free parameters in the model, and
the desired significance threshold. If d < dL or 4-d <
dL, then d is considered significant for either positive
or negative serial correlation, respectively. If dL < d <
dU, then the D–W statistic is indeterminate.

The second statistical test applied to the models is the
standard chi-square test, x2, which is given as Eq. 11:

x2 ¼
Xn
i¼1

yfit � yið Þ2
no

; ½11�

where yfit is the estimated value of the actual data, yi,
and no is the number of degrees of freedom.

The third statistical test used to determine the validity
of the models is the Akaike information criterion (AIC).
Given a set of models, the AIC is a method to select the
model that best balances goodness of fit with number of
free parameters (36). It is computed via Eq. 12:

AICc ¼ 2k þ n ln
RSS

n

� �
þ 2k k þ 1ð Þ

n� k � 1
; ½12�

where n is the number of observations, k is the number
of parameters, and RSS is the residual sum of squares.
Note that Eq. 12 is the form of the AIC that includes a
second-order correction to account for a small number of
observations; this is typically denoted by the subscript
‘‘c’’ on ‘‘AIC.’’ In the experimental data presented below,
there are 25 observations in the DCE time series data and
the FXL model has two free parameters, whereas the
FXL_vp, FXR, and SXR models each have three free
parameters. The model returning the lowest AICc value
is the model that represents the best balance between
complexity (i.e., the number of free parameters) and
goodness of fit (i.e., lower RSS).

The fourth and final statistical test we used is the
Bayesian information criterion (BIC), which is also used
to detect the balance between the goodness of fit and the
model complexity. AICc and BIC measure a model simi-
larly, except that the BIC applies a heavier penalty on
the model complexity:
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BIC ¼ n ln
RSS

n

� �
þ k ln nð Þ: ½13�

Data Analysis

Precontrast T1 values, T10 values were computed by fit-
ting the multiflip angle data to Eq. 1. Voxels for which
Eq. 1 could not fit the data were set to zero and not
included in the analysis. Data from each DCE-MRI study
were fit on a voxel-by-voxel basis with Eqs. 5, 6, and 9
to yield estimates of Ktrans (all models), ve (all models),
vp (FXL_vp model only), and ti (FXR and SXR only). The
fitting routine uses a standard gradient-expansion, non-
linear, least-square, curve-fitting algorithm written in the
Interactive Data Language (RSI, Boulder, CO).

Implicit in this analysis is the requirement for meas-
uring or estimating the AIF. We have proposed a simple
and efficient method (34) to obtain the AIF, through
tracking an initial seed point placed within the axillary
artery. Using this method, we obtain the AIF for each
individual patient. Voxels for which the fitting algorithm
did not converge, or converged to unphysical values
(e.g., Ktrans > 5.0 min�1, ve > 1, vp > 1, ti > 3.0 s, or any
parameter below zero) were set equal to zero. Along with
the parameter estimates, values for D–W, x2, AICc, and
BIC statistics were also saved for each voxel. Voxels
were defined as ‘‘enhancing’’ if the averaged postcontrast

signal intensities increased by 50% over the average sig-
nal intensity precontrast time points.

RESULTS

Figure 1 shows an example of the model fit to the experi-
mental data for one enhancing tumor pixel. For this
data, the mean absolute differences between the experi-
mental data and the fit data returned by FXL, FXL with
vp, FXR, and SXR are 0.0044, 0.0022, 0.0019, and 0.0034,
respectively. (Please note that the ‘‘waviness’’ in the fit
curve is due to the noise present in the individually
measured AIF; that is, a smoothed AIF would result in a
smoothed fit.)

Figure 2 shows an example of Ktrans parametric maps
returned by the four models; from left to right, the maps
were obtained from the FXL, FXL_vp, FXR, and SXR,
respectively. The AIF obtained from this patient by our
method (34) is also shown in the figure. Observe how the
SXR model cannot estimate the Ktrans values for most of the
tumor voxels; the SXR model could converge on only 35 6
15% of the enhancing tumor voxels, whereas the FXL,
FXL_vp, and FXR models can converge on 74 6 17, 56 6
16, and 72 6 16% of the enhancing voxels, respectively.
As we need to compare all models involved for each voxel,
if we examine the voxels only for which the SXR returns
an accurate fit, this greatly reduces the number of data
points available for comparison. For this reason, we did

FIG. 1. An example of the plots
of the fit and experimental data.

Please note that the ‘‘waviness’’
in the fit curve is due to the
noise in the individually meas-

ured AIF; when the AIF is
smoothed, the waviness is

eliminated.

FIG. 2. An example of the Ktrans values returned by the four models; from left to right, the maps are given by FXL, FXL_vp, FXR, and
SXR models. The AIF obtained from this patient (by our previously proposed method) is also shown on the right. It is clear that model

selection can greatly affect the parameter values that are returned, and this is why it is necessary to develop a method to select which
model is most appropriate.
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not continue the analysis with the SXR model; and here-
after, we focus on the remaining three models. We return
to this point in the ‘‘Discussion’’ section.

Figure 3 shows an example in which the parametric
maps of Ktrans, ve, D–W, x2, AICc, and BIC are superim-
posed on a postcontrast, central slice through the tumor
of one patient. The maps were obtained from fitting the
signal intensity time courses by the FXL (left column),
FXL_vp (middle column), and FXR (right column),
respectively. For this specific case, the FXL led to the
smallest mean D–W value. The x2, AICc, and BIC all
favor the FXR analysis in �92% of the enhancing voxels.

Figure 4 displays the box and whisker plots of Ktrans

values obtained by the FXL, FXL_vp, and FXR models
for each data set. The figure shows a clear trend that
FXL_vp leads to the smallest median Ktrans values,
whereas the FXR model results in the largest median
Ktrans values in �90% of the data sets. This phenomenon
is consistent with the physical assumptions of the
FXL_vp model, as it includes a term for the vascular vol-
ume, which results in reduced vessel perfusion and per-
meability values. Similarly, the ve values obtained by the
three models for each data set are displayed in Fig. 5.
This figure shows the FXR led to the largest median ve

FIG. 3. An example of the Ktrans, ve,
D–W, x2, AICc, and BIC parametric

maps superimposed on the central tu-
mor slice of one patient. These maps
were obtained by FXL (left column),

FXL_vp (middle column), and FXR (right
column), respectively. In the majority

voxels displaying contrast enhance-
ment, the x2, AICc, and BIC all prefer
the FXL_vp and FXR analyses.
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values in all data sets and FXL returned the smallest me-
dian ve values in 75% data sets. These results match
those reported elsewhere in the literature (24–26).

The percentage of voxels with serial correlation is pre-
sented in Fig. 6. The FXL_vp and FXR models result in
0.71 and 2.33% voxels with serial correlation respec-
tively, indicating a substantially superior description
of the time courses relative to the FXL model, which
displayed serial correlation in 17.64% of the voxels. Fig-
ure 7 shows the percentage of voxel numbers with small-

est x2, AICc, and BIC for each model with 95% confi-
dence intervals. The FXR model displays the smallest x2,
AICc, and BIC in the majority voxels (47.53, 46.59, and
45.25%, respectively). Note that the 95% confidence
intervals of the FXL_vp and FXR overlap for x2, AICc,
and BIC, whereas the 95% confidence intervals of the
FXL and the other two models do not overlap.

The average goodness of fit, over all patient sets, is
reported in Table 1. The results show that the FXL with
vp model has the smallest mean x2 of 4.15 � 10�5,

FIG. 4. The box and whisker plots of Ktrans returned by the FXL, FXL_vp, and FXR model, respectively, for all 28 data sets. The outliers

are omitted to keep the figure concise. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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whereas the FXR and FXL models have mean x2 values
of 4.36 � 10�5 and 5.22 � 10�5, respectively. The aver-
age signal-to-noise ratio for the tumor region of interests
from the central slice is 14.0 6 6.5; because these are
SENSE accelerated scans, the signal-to-noise ratio was
computed as the mean of two precontrast scans multi-
plied by

ffiffiffi
2

p
and divided by the standard deviation of

the difference between those two scans (37). Table 1 also
summarizes the other statistical assessment of the three
models. The paired t-test was applied to each statistical

metric to determine if there was a significant difference
between models as quantified by the different statistical
measures. The D–W statistic indicated that there was a
significant difference (P < 10�6) between the FXL and
all the other models. The FXL led to the smallest mean
D–W value, indicating the FXL model is prone to posi-
tive serial correlation. The AICc and BIC show that the
best balance between goodness of fit and complexity
(�263.59 6 14.69 and �259.93 6 14.69, respectively)
can be obtained by the FXL_vp model. All the P values

FIG. 5. The box and whisker plots of ve returned by the FXL, FXL_vp, and FXR model, respectively, for all 28 data sets. The outliers are

omitted to keep the figure concise. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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between the FXL and FXL_vp and between the FXL and
FXR are less than 0.005 in all statistical metrics, whereas
there is no significant difference between the FXL_vp
and FXR models according to the AIC and BIC metrics.
These model differences can lead to differences in the
actual pharmacokinetic parameter values. The mean
parameter values for all tumor voxels of each data set are
given in Table 2. Consistent with Figs. 4 and 5, the
FXL_vp model led to the smallest mean Ktrans values and
the FXR led to the largest mean Ktrans and mean ve in all
data sets. Furthermore, the P values show significant dif-
ferences in Ktrans and ve values among the three models
(P < 0.005). The mean vp returned by the FXL with vp
model is 0.033 6 0.033 and the mean si returned by the
FXR model is 0.37 6 0.17 s.

The mean CC for all data sets is given in Table 3. The
results show that the correlation between Ktrans returned
by the FXL and FXL with vp models is the strongest (CC
¼ 0.89), whereas the correlation between Ktrans returned
by the FXL with vp model and the FXR model is the
weakest (CC ¼ 0.51). The correlations between ve returned
by different models are similar (from 0.51 to 0.58).

DISCUSSION

The physiological parameters Ktrans and ve are measured
in practice to both diagnose and assess treatment
response in breast cancer (4–9,38), but their values esti-
mated by DCE-MRI analysis are often strongly influenced

by which model is selected. We have attempted to offer
evidence that the FXL model with a plasma component
(Eq. 6) and the FXR model (Eq. 9) are both statistically
superior to the FXL model (Eq. 5) in the analysis of
human breast cancer DCE time courses. Furthermore, the
three models return statistically significantly different
Ktrans and ve values. Although the FXR model has been
argued on physical and physiological grounds (23,24),
the question of which model is statistically superior in
human breast cancer has not been previously estab-
lished. Experiments in this study show that the D–W,
chi-square, AIC, and BIC all favor the use of either the
FXL with the vp component (FXL_vp) or the FXR
approach for the patient group used in this study.

Unfortunately, for our data sets, the SXR model was
unable to converge on most of the enhancing tumor vox-
els. One possible reason is that this model calculates
both T1L and T1S in Eqs. 7–9, making the fitting proce-
dure more complicated. This severely limited our ability
to compare this model to the others. It could be that the
limited signal-to-noise ratio available in our breast DCE-
MRI acquisitions (where we have tried to balance spatial
and temporal resolution requirements) is not sufficient
to allow for analysis with this model. Future studies will
investigate this point.

A natural extension to the FXR, for which there is
physiological motivation, is to add a blood volume com-
ponent. Unfortunately, adding a blood compartment and
still accounting for water exchange between all the

FIG. 6. The percentage of voxel numbers with serial correlation
for all tumor voxels is presented. FXL_vp and FXR result in 0.71

and 2.33% voxels with serial correlation respectively, indicating
substantially superior to FXL which led to 17.64% voxels with se-
rial correlation. The D–W statistic results were significantly differ-

ent (P < 10�6) between the FXL and the other models.

FIG. 7. The percentages of all tumor voxels with the smallest x2,
AICc, and BIC for each model with 95% confidence intervals are

shown. The FXR leads to the majority voxels with smallest statisti-
cal measures, indicating the best goodness of fit and balance
between the goodness of fit and complexity. See the P values in

Table 1.

Table 1
Summary of Statistical Measures of Three Models

Data set

D–W v2 AICc BIC

FXL FXL_vp FXR

FXL

(�10�5)

FXL_vp
(�10�5)

FXR

(�10�5) FXL FXL_vp FXR FXL FXL_vp FXR

Mean 1.70 2.04 1.96 5.22 4.15 4.36 �255.96 �263.59 �262.47 �253.52 �259.93 �258.82

Std Dev 0.27 0.24 0.22 2.92 2.85 2.84 13.34 14.69 13.93 13.34 14.69 13.93

(FXL,

FXL_vp)

(FXL_vp,

FXR)

(FXL,

FXR)

(FXL,

FXL_vp)

(FXL_vp,

FXR)

(FXL,

FXR)

(FXL,

FXL_vp)

(FXL_vp,

FXR)

(FXL,

FXR)

(FXL,

FXL_vp)

(FXL_vp,

FXR)

(FXL,

FXR)

P value 8.6 � 10�8 0.04 1.1 � 10�7 3.2 � 10�5 0.015 0.002 6.4 � 10�7 0.27 0.0005 9.7 � 10�6 0.27 0.003
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relevant compartments (intravascular, extravascular-
extracellular, and extravascular-intracellular) yields a
model that is currently difficult to use in practical situa-
tions. More specifically, adding a vascular term to Eq. 9
and still accounting for the effects of water exchange
requires a three-site (rather than just two sites) model
which has (at least) five free parameters (39) and is cur-
rently unsuitable for voxel level analysis. Indeed, this
model has been studied in simulations (39); and perhaps
more extensive studies are required to determine which
combinations of parameters can be reliably assessed with
a given model. Adding a vascular term to FXL (Eq. 6) is
straightforward and several investigators have done so
and applied this model (see, e.g., Refs. 40–42) in vivo. Li
et al. (39) have recently shown that when there is suffi-
cient CA extravasation from plasma to interstitium, such
as in some tumors, exclusion of a plasma term is an
acceptable assumption. But, when contrast extravasation
is minimal, such as when Ktrans < 0.01 min�1, exclusion
of the plasma term may cause significant errors.

As reported in Table 2, the FXR model results in
higher mean Ktrans and ve (0.35 min�1 and 0.55, respec-
tively), whereas the FXL and FXL_vp lead to the mean
Ktrans of 0.16 and 0.12 min�1 and ve of 0.33 and 0.35,
respectively. The results are reasonable, though a bit ele-
vated, compared with other studies (43–45). For
instance, the work of Li et al. (43) reported that the
mean Ktrans and ve (obtained from a FXL analysis) at
baseline in breast cancer were 0.33 min�1 and 0.44,
respectively. In the effort of Li et al. (44), the mean Ktrans

and ve (obtained from the FXR model) were �0.15 min�1

and 0.6, respectively, for breast cancer. Moreover, the
maximum ve reported in Ref. 44 was up to 0.8. The
study of Miller et al. (45) also showed that the median
Ktrans of baseline for the patients with metastatic breast
cancer ranged from 0.65 to 1.7 min�1. One possible rea-
son for the higher values in Ktrans and ve is the limitation
of the models for tumors with the extreme spatial hetero-
geneity. For example, in regions that are poorly perfused
the CA will accumulate and wash out slowly, which can
lead to large values in ve. For example, Jansen et al. (46)

found that the CA could accumulate within the milk
ducts filled with ductal carcinoma in situ. Under this sit-
uation, the models investigated in this study will not be
able to accurately estimate the extravascular-extracellular
volume. Another source of possible error could be in the
measured AIF. The inaccuracy in the AIF could cause
the propagation of errors in the estimated parameters.
The temporal resolution of 16 s used in this study is not
optimal for AIF characterization (although it is reasona-
ble as it represents a compromise between high temporal
resolution and large spatial coverage), and it may miss
the peak of AIF and therefore cause larger values of
parameters, particularly Ktrans. Also, direct measurements
from the artery are likely to underestimate the peak am-
plitude of the AIF due to T2* and exchange effects.
Those factors affect the accuracy of the AIF, and conse-
quently, affect the measurements of the pharmacokinetic
parameters.

Use of the FXL with a plasma fraction and the FXR
model resulted in a substantial reduction in percentage
of voxels showing positive serial correlation of residuals:
17.64, 0.71, and 2.33% for the FXL, FXL_vp, and FXR
models, respectively. In 47.53% of voxels, the x2 indi-
cated that the FXR model was superior, and in 46.59 and
45.25% of voxels, the AICc and BIC also indicated that
the FXR model was superior. This translated into signifi-
cant differences in the values of Ktrans and ve that were
extracted in the voxel-by-voxel analyses, and under-
scores the fact that different models can yield different
pharmacokinetic parameter values. It is therefore of great
importance to select the appropriate model to analyze
the DCE-MRI time courses so that the most accurate
parameter estimates are obtained. It is plausible that
inappropriate model selection can lead to inaccuracy in,
for example, predicting treatment response. It was the
overall goal of this study to provide a reasonable ration-
ale for model selection. Although the results presented
do not provide a physical or physiological basis for
selecting a particular model, they do provide an objec-
tive statistical basis for selecting a particular model. In
general, the applicability of each model, as well as other

Table 2
Summary of Parameter Values Obtained by Three Models

Data sets

Ktrans (min�1) ve vp si (s)

FXL FXL_vp FXR FXL FXL_vp FXR FXL_vp FXR

Mean 0.16 0.12 0.35 0.33 0.35 0.55 0.033 0.37
Std Dev 0.10 0.07 0.22 0.15 0.15 0.12 0.033 0.17

(FXL, FXL_vp) (FXL_vp, FXR) (FXL, FXR) (FXL, FXL_vp) (FXL_vp, FXR) (FXL, FXR)

P value 5.4 � 10�6 3.2 � 10�6 2.7 � 10�5 0.002 7.5 � 10�14 0.002 N/A N/A

Table 3

The CC Between Ktrans and ve Obtained by Three Models

Data sets

CC of Ktrans CC of ve

(FXL, FXL_vp) (FXL_vp, FXR) (FXL, FXR) (FXL, FXL_vp) (FXL_vp, FXR) (FXL, FXR)

Mean 0.89 0.51 0.72 0.58 0.51 0.58
Std Dev 0.13 0.24 0.17 0.11 0.16 0.12
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models, will depend on the physiology, anatomy, and
heterogeneity of the cancer and surrounding tissues. The
patients selected in this study have clinical stage II/III
invasive mammary carcinoma and are at sufficient risk
of recurrence based on pretreatment clinical parameters
of size, grade, age, and nodal status. For this group of
patients, the FXL_vp and FXR models show significant
advantages. However, early noninvasive cancers (e.g.,
ductal carcinoma in situ) may have less blood volume
(lower vp values) compared to the locally advanced
breast cancer. Cell size and tumor heterogeneity also
have an influence on parameters estimated by different
models. It is difficult to know, a priori, the underlying
physiological characteristics of a given voxel of breast
tissue, so it is difficult to select which model is most re-
alistic. In this case, a statistical assessment of model fit-
ting is not only a reasonable way to proceed but also
practical because it provides a rigorous reason for select-
ing a given model over another. Furthermore, the statisti-
cal results can reflect some of the underlying physiologi-
cal properties of a given breast tumor. For example, in
cases where the FXL_vp model is selected by the statisti-
cal measures as the most accurate, we can infer that
those voxels have a significant plasma component (i.e.,
vp > �0.03), whereas in those situations where the FXR
model is selected, we can infer that the difference in
concentration of CA between the extravascular-extracel-
lular space and the extravascular-intracellular space
must be great enough to drive the system out of the FXL.

The ultimate test for these models is their ability to an-
swer important clinical questions, such as treatment
effects during longitudinal studies of patients under-
going neoadjuvant chemotherapy or the ability to distin-
guish malignant breast tumors from benign lesions. Li
et al. (29) have performed preliminary analyses on be-
nign and malignant breast diseases. We have an ongoing
study testing the abilities of parameters returned by dif-
ferent models to predict the response of breast tumors to
neoadjuvant chemotherapy (47).

In conclusion, the results of the four statistical met-
rics used in this study indicate that, for the group of
patients selected for this study, the FXL with a plasma
component and the FXR model have significant advan-
tages over the FXL and SXR models. The methods out-
lined here also provide a statistical mechanism for
selecting and assessing other DCE models. Moreover,
our results highlight the possibility that in heterogene-
ous tissues, the most appropriate models may vary
between voxels.
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